
Umich EECS498 Applied Parallel Programming with GPUs

Final Project Report

Dec 2019

Team 8

Wentao Zhang

Haojie Ye

Contents

1 Implemented Optimizations ii

1.1 Shared Memory Convolution . ii

1.1.1 Reason . ii

1.1.2 Implementation Method and Effect . ii

1.2 Weight Matrix in Constant Memory . iii

1.2.1 Reason . iii

1.2.2 Implementation Method and Effect . iv

1.3 Parallelism in Output Images . iv

1.3.1 Reason . iv

1.3.2 Implementation Method and Effect . iv

1.4 Sweeping Various Parameters . v

1.4.1 Reason . v

1.4.2 Implementation Method and Effect . vi

1.5 Unroll Loop . vii

1.5.1 Reason . vii

1.5.2 Implementation Method and Effect . vii

2 Output and Profiler Screenshot ix

3 Work Distribution x

i

Chapter 1

Implemented Optimizations

1.1 Shared Memory Convolution

1.1.1 Reason

We use a 2-dimensional shared memory to map to each output image pixels. Each block of shared

memory fetches the input pixel of the corresponding image and output the output features.

Using shared memory implementation in CUDA programming usually achieves 2 benefits based

on what we have learned in class. They are (a) Increase the compute/memory access ratio. (b)

Memory coalescing (when fetching from global memory to shared memory). In the convolution

kernel, we use shared memory mainly to achieve better compute/memory access ratio. We

initially used a shared memory size (32x32), in this case the shared memory implementation

has 1000x compute/memory access ratio compared with fetching each data from the global

memory. Later we modified the shared memory size to 11x11 and 24x24 to avoid divergence

within the block. This heuristic tuning creates a trade off between the compute/memory access

ratio and the amount of thread divergence in the thread block, but the overall principle is that

the shared memory implementation will greatly improve the compute/memory access ratio,

reduce the amount of the global memory accesses, and achieves better kernel performance.

1.1.2 Implementation Method and Effect

The CUDA code of implementing shared memory is as follows. Note that this piece of code

demo (Fig. 1.1) captures the idea of how we implement the shared memory, but more details

are open to change to fit in more optimizations in our work.

ii

Chapter 1. Implemented Optimizations 1.2. Weight Matrix in Constant Memory

Figure 1.1: Shared Memory Implementation (Final version differs from this piece of code)

Because the convolution kernel will shrink the size of input, we fetch more elements as the

input feature than output features, just as we did in 3D convolution kernel implementation

in homework. For example, if we set the shared memory size is 32x32, the dimension of the

output block size will be 32 - KernelWidth + 1. We then compute each output features with

the kernel information along with the input features in the shared memory (shown in Fig. 1.1).

The shared memory implementation (along with the parallelism in output images) has a large

improvement on the performance, as it reduces the kernel execution time of the second case

from 25s to about 0.7s.

1.2 Weight Matrix in Constant Memory

1.2.1 Reason

CUDA constant memory enables a faster scratchpad structure and interface to efficiently read

from the read-only memory. In the convolution kernel, we observed that the kernel information

remains unchanged during the kernel execution time. We exploit this observation and put the

kernel data in the read-only constant memory, which gives better performance than fetching

the kernel data from the global memory or the shared memory (putting kernel data in shared

memory may generate unnecessary bank conflict).

iii

1.3. Parallelism in Output Images Chapter 1. Implemented Optimizations

Figure 1.2: Constant memory initialization

Figure 1.3: Constant memory copy from host to device

1.2.2 Implementation Method and Effect

The CUDA code of implementing constant memory is as follows. Constant memory initialization

example is shown in Fig. 1.2, and constant memory copy from host to device example is shown

in Fig. 1.3. The constant memory implementation has little effect on the improvement on the

performance, as it reduces the kernel execution time of the second case for less than 0.1s.

1.3 Parallelism in Output Images

1.3.1 Reason

The starter code shows the example of assigning each thread for each single image. This imple-

mentation lacks parallelism in output images because threads in each output images execute in

sequence. Our purposed layout of the threads assign each thread for each output image pixels.

Different threads can collaborate in computing the output features and construct the features

for each image in parallel, thus achieving parallelism in input images. The layout of the thread

blocks mapping to output features of the image set is illustrated in Fig. 1.4. The M output

features for each images are expanded so that the output features can be computed in parallel.

The layout of the thread blocks enables computation of the output features in parallel, compared

with the baseline design where M output features are computed sequentially. This parallelism

in output images gives M times better performance (if neglecting the launching overhead of the

additional thread blocks).

1.3.2 Implementation Method and Effect

The CUDA code of implementing parallelism in output image is as follows. As shown in Fig. 1.5,

these parameters are initialized in order to index the output features for each thread block in par-

allel. Overall, assume that the dimension of the thread block is (Blocksize, Blocksize). Thus, the

dimension of grid is (number of images x M x ceil(ImageWidth / Blocksize), ceil(ImageHeight /

iv

Chapter 1. Implemented Optimizations 1.4. Sweeping Various Parameters

Figure 1.4: Constant memory initialization

Figure 1.5: Constant memory initialization

Blocksize). The shared memory implementation (along with the parallelism in output images)

has a large improvement on the performance, as it reduces the kernel execution time of the

second case from 25s to about 0.7s.

1.4 Sweeping Various Parameters

1.4.1 Reason

The width and height of the image differs in the two test cases that are used to test the

performance of the convolution kernel. Specifically, they are 33 and 72. If we use a unified block

size to be 32x32, the number of block allocated for each output image and feature will be 2x2

and 3x3. What is more, 3 out of 4, 5 out of 9 of the thread blocks will have a control divergence

because these blocks have thread size that exceeds the image size. Under this observation, we

v

1.4. Sweeping Various Parameters Chapter 1. Implemented Optimizations

Figure 1.6: Constant memory initialization

purpose to sweep various size of thread block and size of grid to reduce the control divergence

in the thread blocks. For example if we set the thread block size to be 11 to tackle the test

case where the image size is 33, we lose some level of compute/memory access ratio because the

reduction in shared memory size, but we have less control divergence in the kernel code because

no thread size exceeds the image size when fetching image data with thread blocks.

1.4.2 Implementation Method and Effect

The CUDA code of implementing sweeping Various parameters is as follows. As shown in

Fig. 2.1, we tailor different thread block sizes for the two test cases, and for the rest of the

cases, we apply the default thread block size 32x32. In this way, we examined the trade off

between the compute/memory access ratio and the amount of control divergence within the

thread block. The sweeping various parameters implementation has a medium improvement on

the performance, as it reduces the kernel execution time of the second case from 0.7s further to

about 0.4s.

vi

Chapter 1. Implemented Optimizations 1.5. Unroll Loop

1.5 Unroll Loop

1.5.1 Reason

We have observed that the kernel size has remained unchanged in different test cases. This

gives us a motivation to unroll the loop that iterate the kernel data. In a conventional way (as

in the starter code), there are two temporary variables that are used to iterate the kernel. We

purpose to unroll the loop that iterates the constant kernel. This will potentially save the ALU

operation that increment and bound checking of the two temporary variables.

1.5.2 Implementation Method and Effect

The CUDA code of implementing loop unrolling is as follows. The Fig. 1.7 shows in part that

the kernel read loop is unrolled into 49 consecutive lines. This unrolling of the loop saves the

redundant instructions that are used to loop through the kernel data, since we know that the

kernel has a fixed size of 7. Unrolling to 49 lines allows the thread to progress without frequent

checking of the bounding conditions and increment of the temporary variables. The unrolling

loop implementation has a medium improvement on the performance, as it reduces the kernel

execution time of the second case from 0.4s further to about 0.3s.

vii

1.5. Unroll Loop Chapter 1. Implemented Optimizations

Figure 1.7: Constant memory initialization

viii

Chapter 2

Output and Profiler Screenshot

Using the nvprof, we get the following profiler result. As we can see, comparing with the original

version, which takes about 20s to do the 2 forward convolution layer, our final version takes

0.09s and 0.345s for two layers, with the same correctness as the original one.

Figure 2.1: Profiler Screenshot

ix

Chapter 3

Work Distribution

Wentao Zhang:

Shared Memory Convolution, Weight Matrix in Constant Memory, Parallelism in Output Images

Haojie Ye:

Shared Memory Convolution, Weight Matrix in Constant Memory, Sweeping Various Parame-

ters, Unroll Loop.

x

	Implemented Optimizations
	Shared Memory Convolution
	Reason
	Implementation Method and Effect

	Weight Matrix in Constant Memory
	Reason
	Implementation Method and Effect

	Parallelism in Output Images
	Reason
	Implementation Method and Effect

	Sweeping Various Parameters
	Reason
	Implementation Method and Effect

	Unroll Loop
	Reason
	Implementation Method and Effect

	Output and Profiler Screenshot
	Work Distribution

