Hardware-Software Co-Designed Cache Bypass
Mechanism on X86 Machine

EECS 583 Fall 2020 Final Project Report
Group 11: Yichen Yang, Wentao Zhang, Wenqi Zhu, Zhiyi Pan
University of Michigan, Ann Arbor, MI, USA
{yangych, zwtao, zwq, zhiyipan} @umich.edu

Abstract—With the growing size of real-world datasets running
on modern x86 machines, real-world application are suffering
a lot from the memory bottleneck. Multi level cache hierarchy
is designed to store the most recent used data near the core
for future accesses with lower latency comparing to the DRAM.
Thus, to acquire a piece of data from the memory hierarchy,
normal CPU usually follows the path of L1 cache, L2 cache and
DRAM. However, the least recent use (LRU) eviction policy may
not work well for some instructions. Some data are not reused
again after being brought into the cache. In such scenario, the
cache is polluted with useless data and may evict data that are
needed in the near future.

Previous works have proposed doing ucache bypass on a EPIC
(Explicitly parallel instruction computing) machine. They use
compiler to analyze the application characteristic and schedule
the instructions with the awareness of the ucache bypass mecha-
nism. The compiler selects some load instructions that will pollute
the ucache to do the bypass, thus getting better utilization of the
ucache and better overall performance.

Inspired by ucache bypass on EPIC machine, we explore the
opportunity of doing general cache bypass on modern x86 out-
of-order machine. We developed multiple compiler pass based on
different bypass instruction selection algorithms to analyze the
cache profiling stats and mark instructions to bypass the cache.
We also evaluated and compared different selection algorithms on
some graph workloads. Our proposed cache bypass mechanism
on X86 machine can reduce the L1D cache miss rate under some
scenarios.

I. INTRODUCTION

The development of semiconductor technology makes it
possible to build high performance computer systems with
multiple processors. The execution speed of operations grows
faster, but fetching data from the main memory is slow. Use
of cache can ameliorate this problem since cache reference
time is much less than main memory reference time. However,
fetching infrequently used data into the cache on a cache-
miss sometimes reduces system performance eve if the cache
size is infinitely large [4]. Figure [I] shows percentage of
total execution time cost on different parts of the workload.
It indicates some graph algorithms are bottle-necked by the
memory. Fortunately, cache bypassing, where the memory
requests can selectively bypass the cache, is one of effective
solutions.

Wau et al. [10] have explored selective micro-cache(ucache)
bypassing for high performance EPIC processors. Their work
focuses on a small and fast data cache at the beginning of the
memory hierarchy and EPIC microprocessors.

100% other
DRAM

75%
L3

i w
D)
B branch

- N B
[

25%

% of Total Exe. Time

fp
B int
B base

0%

BC BFS cc PR

SSsP TC

Graph Benchmark

Fig. 1: Percentage of total execution time spent on different part of
the workload. Dataset is Slashdot0922 [8]]. Most graph workloads are
bottle-necked by the memory.

EPIC microprocessors execute instructions in an order gov-
erned by the availability of input data and execution units [J5]].
However, many modern processors like Intel x86 use out-of-
order execution.

In this paper, we develop a L1/L2 cache bypassing system
on X86 machines. We first introduce background in Section
then illustrate different parts of our design in Section
and the integrated methodology in Section Evaluation and
results are discussed in Section [V] and [V1l

II. BACKGROUND

Cache profiling technology has been explored by many
researchers in past years [1, 3| |6, [9]. Our approach utilizes
cache profiling data to determine which part need to be
bypassed as shown in section

The profiling time is large for complex applications with a
large input data. The running time and compilation time will be
significantly decreased if we feed those applications with small
input data. Furthermore, there are many overlap bypassing PCs
(program counters) between running small and large input data
on the same application. Hence, we can do cache profiling on
a application with the small input data to generate a bypass
list, then use this bypass list on the application with larger
input data to achieve better performance as shown in section
This will greatly reduce the compilation overhead while
maintaining a decent performance.

III. DESIGN

The hardware-software co-designed cache bypass mecha-
nism consists of three parts: 1) cache profiling, 2) compiler
pass and 3) hardware modification. This section will introduce
these three parts in detail. Note that we only bypass the load
instructions, and all the store instructions perform as normal.

CPU CPU
| L1 Cache | | L1 Cache |
I I
| L2 Cache | | L2 Cache |
I I

‘ DRAM ’

Fig. 2: Memory hierarchy after modification. Modification is marked
in red.

A. Cache Profiling

Firstly, we need to run an non-optimized program on the
machine to collect the cache performance stats. To support
a variety of compiler algorithm, the profiling stats includes
hit/miss for each instruction, hit/miss rate for each PC and
hit/miss rate for each target address, and pass these stats to
the compiler.

B. Compiler Pass

Secondly, we use the compiler to analyze the cache profiling
stats and mark these selected load instructions as cache bypass
load instructions. Specifically, we proposed several algorithms.

o Load Instruction Miss Rate (Naive):
The compiler will select the PCs that has a overall
miss rate higher than a certain threshold (swept in later
experiment) to bypass the cache.

o Top % Miss Rate:
The compiler will select the top certain percent (swept in
later experiment) of PCs to bypass the cache.

« Reuse Probability:
Following [10]], the load miss no reuse probability
(mnrp) is calculated as Equation [I] The compiler will
select the PCs that has a mnrp higher than a certain
threshold (swept in later experiment) to bypass the cache.

number_misses_no_reuse

= 1
mnrp number_loads_executed M

C. Hardware Modification

After the compiler marked load instructions that should
bypass the cache, the hardware should accommodate this
ISA level modification. In addition to the normal memory
hierarchy, another link from CPU cores to the DRAM should
be added (marked in red in Figure [2). The core will then
determine which path to load the data based on the compiler
marked instructions. If the instruction is marked as bypass,
it will follow the red line and directly access the memory.
Otherwise, it will follow the normal path and access L1 cache
first.

D. Integration

Put all these together. Our design first collects cache profil-
ing stats and adopts a compiler pass to mark the instructions
to bypass the cache in ISA level. The modified hardware will
based on the mark passed by the compiler to directly access
the DRAM or access the L1 cache as normal.

IV. METHODOLOGY

We use Dynamorio [1f] with its built-in cache simulator
as our main tool. For the cache profiling, we hacked Dy-
namorio to dump a offline memory accessing trace including
load&store instruction PC, hit/miss for this instruction and
target data address. For the compiler pass, we developed
a compiler pass in Python to analyze the offline trace and
generate a Bypass-List storing all the PCs that should bypass
the cache. In addition to generating only one Bypass-List,
we also take the intersection of several datasets’ Bypass-List
to form a common Bypass-List in some experiments below.
For the cache simulation, we modified Dynamorio to read
the Bypass-List created by our compiler pass and perform
cache bypass. Note that all the experiments are conducted after
turning off Address Space Layout Randomization (ASLR) on
a Linux machine to keep the instruction address consistent in
several runs.

A. Benchmarks

We used graph workloads from gapbs [2], including
Breadth-First Search (BFS), Single-Source Shortest Paths
(SSSP), PageRank (PR), Connected Components (CC), Be-
tweenness Centrality (BC) and Triangle Counting (TC) be-
cause graph workloads is mostly bottle-necked by the memory
(Figure [I). We mainly used BFS in the following evaluation
part.

B. Dataset

We used SNAP dataset [7]] in the graph algorithms. Table [l
shows a list of them.

Dataset | #Node #Edges | Category
email-Eu-core (email) 1K 25.5K Train/Test
p2p-Gnutella08 (p2p) 6.3K 20.7K Train

wiki-Vote (vote) 7.1K 104K Train
ca-GR-QC (qc) 5.2K 12.5K Test
Slashdot-09 (slash) 82K 948K Test
Pokec (pk) 1.6M 30M Test

TABLE I: Graph datasets used in experiment. Train means it is used
to generate Bypass-List, and Test means it is used to test the bypass
performance.

C. Simulated Cache Hierarchy

We used default cache setting from Dynamorio cache sim-
ulator. Specifications are listed in Table

L1 Size 32KB
L1 Assoc 8
L2 Size 8SMB
L2 Assoc 16

Cache Line Size 64

TABLE II: Cache simulator specification.

V. EVALUATION

In this section, we will use BFS to evaluate our cache
bypassing algorithm on the benchmarks mentioned in Sec-
tion m We evaluate our algorithms based on the L1D cache
hit and miss number. Then the best algorithm is used to test
its performance on different data size, cache size and cache
line size. Finally, we will estimate its performance gain.

A. Bypassing List Similarity

Figure 3] shows the similarity between the bypass lists
generated by different data sets, email, p2p and vote in
our case. The similarity is defined as the intersection of the
PCs in bypass lists divided by the union of them. The average
common rate across different bypass threshold value can reach
73%. This shows that for a certain program, the majority of
the bypass list will be the same even if the data set it uses
is different. This also validates the assumption in Section [II]
that using small data set generated bypass list to optimize the
program with larger data sets.

Common Rate vs. Reuse Prob Threshold

0.80

0.75 /—/—,/’k
0.70

0.65

0.60

0.55
0.3 0.4 0.5 0.6 0.7 0.8 0.9

common_rate

threshold

Fig. 3: Bypass lists similarity of BFS running email, p2p and vote
dataset with different reuse-prob. threshold.

B. Bypassing Algorithm Evaluation

1) Naive and Top Miss Rate: Figure [and Figure [5] show
the performance of the Naive algorithm and the Top Miss Rate
algorithm. Both of them didn’t achieve the goal to reduce the
number of L1D cache miss while keep the L1D hit opportunity.
The Naive algorithm reduces the L1D cache miss, but it also
cuts too many L1D cache hits. The Top Miss Rate Algorithm
doesn’t filter out the miss effectively. The reason behind these
two algorithm’s bad performance can be that they make the
bypassing decision only based on one PC’s miss probability.
In reality, the cache line loaded by this specific instruction
can be reused by other instructions, which forms a producer
and consumer pattern. So simply bypassing the “producer”
instruction may incur “consumers’s” miss thus increasing the
overall miss rate.

== L1DHit == L1D Miss
60,570,100 334,825

60,570,000 334,800
334,775
60,569,900
334,750
60,569,800

334,725
334,700

Hit Count
Miss Count

60,569,700
0.70 0.75 0.80 0.85 0.90

Threshold

Fig. 4: Number of L1D Cache hits and misses (Naive Algorithm)

== L1DHit == L1D Miss

762,500
760,000
757,500
755,000
752,500
750,000 17,500
747,500 17,000
0.02 0.04 0.06 0.08 0.10

19,500
19,000
18,500
18,000

Hit Count
Miss Count

Threshold

Fig. 5: Number of L1D Cache hits and misses (Top Miss Rate
Algorithm)

2) Reuse Probability: Figure [6] shows the L1D cache hit
and miss number with different bypassing thresholds. The re-
sult is collected from the email data set. When the bypassing
threshold is 0.5, the hit number almost reaches the maximum
value while the miss number remains low. Further increasing
the threshold value will not gives us higher hit counts, but will
solely increase the miss numbers. The threshold of 0.5 seems
to be a sweet point for the reuse probability algorithm. Thus,
in the following discussion, we will use 0.5 as our threshold
value for the Reuse Probability Algorithm.

== L1D Hit == L1D Miss
761,925
761,900
761,875
761,850
761,825

761,800 18,800
0.3 0.4 0.5 0.6 0.7 0.8 0.9

19,000

18,950

18,900

Hit Count
Miss Count

18,850

Threshold

Fig. 6: Number of L1D Cache hits and misses (Reuse Probability
Algorithm)

C. Effects of Bypassing on Cache Performance

Section shows that the Reuse Probability algorithm
with threshold value 0.5 achieves the best performance on the
email data set. So in the following discussion, we will use this
setting and evaluate its performance with regard to the data set
size, cache size and the cache line size.

1) Data Size: The Reuse Probability algorithm will have
better performance on the data sets whose edges and nodes
number is similar to the training data set size. For the large
data set, this algorithm won’t achieve satisfying result. The
benefit provides by bypassing the loads will be diminished by
the later store operation. Since the number of stores increases
with the data size, the impact of store will become dominant
in cache hits and misses.

2) Cache Size: Figure[] shows the L1D cache hit and miss
counts with and without bypassing with regard to the different
cache size. The reduction in number of hits does not scale with
the cache size. However, from Figure B[, we can observe the the
bypassing algorithm is more effective on small cache size. This
is because the smaller cache will have more conflict misses,
thus providing the bypassing algorithm more opportunities.

3) Cache Line Size: Figure O] shows the relationship be-
tween the reduction of L1D cache miss and the cache line
size. With smaller cache line size, the miss reduction counts

B L1D Hit bypass
60,650,000

B L1D Miss bypass L1D Hit nobypass [L1D Miss nobypass

550,000

60,600,000 500,000
= 60,550,000 450000 &
§ 60,500,000 400,000 3
= 60,450,000 350,000 %
< 60,400,000 I l I 300,000 =

60,350,000 1 aka 250,000

4K 8K 16K 32K 64K
L1D Cache Size
Fig. 7: Number of L1D Cache hits and misses
. 5000
5 4973
8 4000
c
£ 3,000
o
S
z) 2,000 2,446
3 1,000
s ’ 1,158 39 15
= 0
- 4K 8K 16K 32K 64K

L1D Cache Size

Fig. 8: L1D cache miss reduction for different L1D cache size.

significantly increases. This is because that the smaller cache
line size provides smaller spatial locality. The reuse probability
of a specific cache line will decrease. Thus, bypassing that
cache line will potentially cause less new cache miss. This
leads to the greater reduction in L1D cache misses.

2,000
1,500
1,000

500

16 32 64 128

L1D Miss Reduction Count

Cache Line Size

Fig. 9: L1D cache miss reduction for different cache line size.

D. Performance Gain

Finally, we will estimate the total cache access time based
on the number of cache hits and misses to show the per-
formance gain provided by the Reuse Probability bypassing
algorithm. We choose Intel i7-4770 as our estimation CPU,
since it has the same size L1 cache as our simulator. The
specification used in calculation is listed in Table

L1 Size 32KB
L1 Assoc 8
L2 Size 8MB
L2 Assoc 16
Cache Line Size 64
L1 Hit Latency (cycles) 5
L2 Hit Latency (cycles) 66
L2 Miss Latency (cycles) 128
Bypass Latency (cycles) 62

TABLE III: Cache specification and access latency for overall per-
formance estimation.

The total cache access time without bypassing will be
calculated as:

access_time_nobypass = hit_time X hit_counts)
+ miss_time X miss_counts
The total cache access time with bypassing will be calcu-
lated as:

access_time_bypass = hit_time X hit_counts
+ miss_time X miss_counts 3)
+ bypass_time x bypass_counts

The L1 miss time will be calculated as:
L1 _miss_time = L1_hit_time + LL_hit_time

4
+ LL_miss_time X LL_miss_rate @)

Bypass count will be calculated as:

bypass_count = L1_hit_nobypass + L1_miss_nobypass

— (L1_hit_bypass + L1_miss_bypass)
%)

Figure [I0] shows the estimated overall performance gain on
different test graph data set in terms of of execution cycles
improved. We see that the bypass algorithm works better on
some smaller data sets (email and gc), while not achieving
good performance gain on some large data sets (slash
and pokec). One reason is that the bypass opportunity will
decrease as the data set size increases. In the large data set,
a cache line will be less likely to be reused by the other
PCs before it is evicted and this leads to the lower bypass
opportunity and less performance gain. Also, bypass the L1
cache will lead to higher LL cache miss in the large data set.
This causes the performance lost.

100000

68569 9623
0

-100000

-13339

Improvement (cycles)

-200000

email qc slash pokec

Dataset

Fig. 10: Estimated overall performance gain on different test graph
data set.

VI. DISCUSSION AND FUTURE WORKS

In this section we discuss the limitations in our current
method, along with possible workarounds and future works.

Not perform well on large data set. As mentioned in
Section our method doesn’t perform well on large data
set, and it even causes performance downgrade on pokec
data set.The possible reasons is that data-access pattern of
applications on large dataset is different from that on small
dataset. We can investigate data-access pattern in larger dataset
and adjust our algorithms.

A single iteration might not suffice for reaching global
optimal. All the experiments we conduct are single-iteration,

namely we only run our tool chain once to get the results. It
might not be enough for an optimized result: single-iteration
bypass generates new miss. For future works, it’s worth trying
running the tool chain for multiple iterations. We expect
multiple iterations will finally converge to a global optimal,
where no more new miss will be generated after bypassing.

Current method bypass the whole cache. In the current
version of our bypassing tool chain, once the load is annotated
as a bypassed load, it will bypass the whole cache. We
think it might cause performance downgrade under some
circumstances. If a load instruction is never reused in L1D
but is frequently reused in LLC, it’s not smart to bypass the
whole cache including LLC. To further improve the bypassing
tool chain, our future work includes bypassing selected layer
of cache based on both L1D and LLC profiling statistics.

VII. CONCLUSION

In this paper we discussed if x86 machine has cache bypass
opportunity like Epic machine. We build an end-to-end HW-
SW co-designed tool chain to show that cache bypass brings
performance gains to X86 machine under some circumstances.
More specifically, our tool chain with reuse probability algo-
rithm works best among all three proposed algorithms and it
performs better on small cache size and small cache line size.
We demonstrate that X86 do have cache bypass opportunities
under some circumstances.

REFERENCES

[1] “Dynamic instrumentation tool platform,” https://dynamorio.org/.

[2] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, vol. abs/1508.03619, 2015. [Online]. Available:
http://arxiv.org/abs/1508.03619

[3]1 E. Berg and E. Hagersten, “Fast data-locality profiling of native
execution,” in Proceedings of the 2005 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, ser. SIGMETRICS ’05. New York, NY, USA: Association
for Computing Machinery, 2005, p. 169—180. [Online]. Available:
https://doi.org/10.1145/1064212.1064232

[4] C. Chi and H. Dietz, “Improving cache performance by selective cache
bypass,” in Proceedings of the Twenty-Second Annual Hawaii
International Conference on System Sciences. Volume 1: Architecture
Track, vol. 1. Los Alamitos, CA, USA: IEEE Computer Society, jan
1989, pp. 277,278,279,280,281,282,283,284,285. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/HICSS.1989.47168

[5] W. W. S. Chu, Dimond RG, S. Perrott, S. P. Seng, and W. Luk,
“Customisable epic processor: architecture and tools,” in Proceedings
Design, Automation and Test in Europe Conference and Exhibition,
vol. 3, 2004, pp. 236-241 Vol.3.

[6] A. R. Lebeck and D. A. Wood, “Cache profiling and the spec
benchmarks: a case study,” Computer, vol. 27, no. 10, pp. 15-26, 1994.

[7] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[8] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney,
“Community structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters,” Internet Mathematics, vol. 6,
no. 1, pp. 29-123, 2009.

[9] E. van der Deijl, G. Kanbier, O. Temam, and E. D. Granston, “A
cache visualization tool,” Computer, vol. 30, no. 7, pp. 71-78, 1997.

[10] Youfeng Wu, R. Rakvic, Li-Ling Chen, Chyi-Chang Miao,
G. Chrysos, and J. Fang, “Compiler managed micro-cache bypassing
for high performance epic processors,” in 35th Annual IEEE/ACM
International Symposium on Microarchitecture, 2002. (MICRO-35).
Proceedings., 2002, pp. 134-145.

https://dynamorio.org/
http://arxiv.org/abs/1508.03619
https://doi.org/10.1145/1064212.1064232
https://doi.ieeecomputersociety.org/10.1109/HICSS.1989.47168
http://snap.stanford.edu/data

	Introduction
	Background
	Design
	Cache Profiling
	Compiler Pass
	Hardware Modification
	Integration

	Methodology
	Benchmarks
	Dataset
	Simulated Cache Hierarchy

	Evaluation
	Bypassing List Similarity
	Bypassing Algorithm Evaluation
	Naive and Top Miss Rate
	Reuse Probability

	Effects of Bypassing on Cache Performance
	Data Size
	Cache Size
	Cache Line Size

	Performance Gain

	Discussion and Future Works
	Conclusion
	REFERENCES

