
ASIC Design for Bitcoin Mining
Yiqiu Sun

University of Michigan
Ann Arbor, Michigan
sunsusan@umich.edu

Haichao Yang
University of Michigan
Ann Arbor, Michigan
hcyang@umich.edu

Wentao Zhang
University of Michigan
Ann Arbor, Michigan
zwtao@umich.edu

Yufeng Gu
University of Michigan
Ann Arbor, Michigan
yufenggu@umich.edu

ABSTRACT
This paper first gives a brief introduction to the bitcoin and how
the SHA-256 hash function is related with the bitcoin mining. We
examine how the hash function is implemented on the CPU and
GPU. Three ASIC designs (Naïve, Novel Counter-Based, Pipeline)
are then given, beating the CPU and GPU in terms of power effi-
ciency and latency. Finally, the costs of all hardware designs are
compared. The code can be found at the github repository1.

1 INTRODUCTION
Cryptocurreny has become increasing relevance in the financial
world[8]. Although many cryptocurrencies had been proposed,
bitcoinwas the first among them to provide a truly trustless solution.
As a form of currency with no central administrator, Bitcoin’s
authenticity is represented by the fact that the more computation
power is contributed to its network, the larger reward (profit) one
can get. Therefore, a bitcoin mining accelerator with higher energy-
efficiency and cost-efficiency is in growing demands.

A number of hardware designs have been proposed so far, in-
cluding approximate computing[6], quasi-pipelined hash functions
[9] and Goldstrike 1 architecture[8]. The purpose of this paper is
to present and analyze some hardware implementations (Naïve
version,) of the bitcoin mining in terms of energy-efficiency and
cost-efficiency.

2 BACKGROUND
The bitcoin miner source code can be found on github2, and is
surprisingly simple. The basic computation is the SHA-256 Hash, a
cryptographic hash function widely used in security applications
and protocols.

2.1 SHA-256 Algorithm
SHA-256 Algorithm takes a message M as input and returns a 256
bits number as the result. The message M is first padded and then
divided in N 512-bit blocks 𝑀 (1) , 𝑀 (2) , ...𝑀 (𝑁) . Each block 1 is
made up by 16 32-bits words𝑤 (𝑖)

0 ,𝑤
(𝑖)
1 , ...𝑤

(𝑖)
15 . The first 16 words

will be extended into the remaining 48 words 𝑤 [16..63] of the
message schedule array. The 512-bit blocks and message schedule
array will be passed to the compression function to generate the
final 256 bits result. Each round is dependent on the last round,

1https://github.com/susansun1999/eecs570_final_project
2https://github.com/bitcoin/bitcoin/blob/master/src/miner.cpp

creating a stable chain of dependencies between operations. The
compression function algorithm is shown in Algorithm 1.

Algorithm 1: SHA-256 Algorithm Compression function
Loop
Result: Take a 512-bit block (a,b,c,d,e,f,g,h) and message

schedule array W as input, return a 256 bit hash
number

// Initialize working variables to current hash

value

1 a := h0, b := h1, c := h2, d := h3, e := h4, f := h5, g := h6, h :=
h7;

// Compression function main loop

2 for i from 0 to 63 do
3 S1 := (e rightrotate 6) xor (e rightrotate 11) xor (e

rightrotate 25);
4 ch := (e and f) xor ((not e) and g);
5 temp1 := h + S1 + ch + k[i] + w[i];
6 S0 := (a rightrotate 2) xor (a rightrotate 13) xor (a

rightrotate 22);
7 maj := (a and b) xor (a and c) xor (b and c);
8 temp2 := S0 + maj;
9 h := g;

10 g := f;
11 f := e;
12 e := d + temp1;
13 d := c;
14 c := b;
15 b := a;
16 a := temp1 + temp2;
17 end

// Add the compressed chunk to the current hash

value:

18 h0 := h0 + a, h1 := h1 + b, h2 := h2 + c, h3 := h3 + d, h4 := h4
+ e, h5 := h5 + f, h6 := h6 + g, h7 := h7 + h;
// Produce the final hash value (big-endian)

19 hash := h0 append h1 append h2 append h3 append h4
append h5 append h6 append h7

Yiqiu Sun, Haichao Yang, Wentao Zhang, and Yufeng Gu

3 IMPLEMENTATION ON GENERAL
PROCESSORS

In the evolution of compute systems intended for Bitcoin mining,
there are some notable challenges and developments starting from
general purpose machine like CPU and GPU.

3.1 CPU
The basic program running on CPU can leverage existing high-
performance libraries for implementing SHA256. Although separate
rounds of a SHA256 computation cannot be parallelized, CPU can
leverage multi-thread cores to achieve parallelism to some degree.
Meanwhile, some of the operations inside a round are paralleliz-
able. However, typical multicore CPU have extra hardware and OS
overheads for memory coherence, resulting in wasted performance
and energy efficiency[10].

3.2 GPU
An open-source OpenCL miner was released on the web in October
2010, and it was rapidly optimized and adapted by several open-
source efforts. Compared with CPU, GPU can achieve much higher
average throughput of threads due to its speciality in fast context
switching.

Since the SHA256 hash computation does not exercise the mem-
ory system or floating point units heavily, many of the critical paths
and bottlenecks in the GPU are not exercised. This implies that the
system can be pushed beyond the normal bounds of reliability[10].

4 ASIC DESIGN
An application-specific integrated circuit (ASIC) is an integrated
circuit (IC) chip customized for a particular use, rather than in-
tended for general-purpose use. To the opposite of CPU and GPU,
ASIC intends to achieve lower latency and power consumption at
the cost of generality. In this section, three ASIC designs (Naïve,
Counter-Based, Pipeline) for the SHA-256 algorithm are presented.

4.1 Naïve ASIC Design
The baseline naïve design contains an array of eight registers to
store the values. The value a and e will be updated every cycle,
while other values will be shifted one index up. This design suffers
from long critical path latency (marked in red). And the power in
shifting unchanged values are wasted.

4.2 Novel Counter-Based Design
Both the pipeline and naïve version need to shift data between
registers in each clock to feed the computation module. However,
only two value will be updated in each clock cycle, which means
most work to shift the data to the new place is useless. Based on
this observation, we proposed a novel design to use a counter to
choose where to collect and store the data .

4.2.1 Mathematical Background. As mentioned in the section 2.1,
each chunk is divided into 8 32 bits blocks (𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔, ℎ). In
each iteration, the SHA-256 updates blocks a and e with 𝑛𝑒𝑤_𝑎 and
𝑛𝑒𝑤_𝑒 , while shifts the block values to the next blocks and keep
the index of each block the same, e.g.
value: 𝑛𝑒𝑤_𝑎 → 𝑎, 𝑎 → 𝑏,𝑏 → 𝑐, 𝑐 → 𝑑, 𝑛𝑒𝑤_𝑒 → 𝑒, 𝑒 → 𝑓 , 𝑓 →

Figure 1: Baseline Naïve Design

𝑔,𝑔 → ℎ

index: 𝑎 = 0, 𝑏 = 1, 𝑐 = 2, 𝑑 = 3, 𝑒 = 4, 𝑓 = 5, 𝑔 = 6, ℎ = 7.

We can transform the flow of data into flow of index. That is
keeping the data in their original places while treating each block
as the next block by changing the block indexes according to the
iteration.

Define 𝑋𝑖 as the index for the element 𝑋 in the iteration 𝑖 . In
the 𝑖𝑡ℎ iteration, the 𝑛𝑒𝑤_𝑎 and 𝑛𝑒𝑤_𝑒 should be written to place
𝑎𝑖+1 and 𝑒𝑖+1 correspondingly, which is the same as ℎ𝑖 and 𝑑𝑖 . The
index for each block in each iteration can be represented as below.
We can use 𝑖 mod counter_value to look up the correct index for
iteration 𝑖 . For example, in the 3rd iteration, the indexes for 𝑎 to ℎ
is [3, 4, 5, 6, 7, 0, 1, 2].

𝑎𝑖 = [0, 1, 2, 3, 4, 5, 6, 7]
𝑏𝑖 = [1, 2, 3, 4, 5, 6, 7, 0]
𝑐𝑖 = [2, 3, 4, 5, 6, 7, 0, 1]
𝑑𝑖 = [3, 4, 5, 6, 7, 0, 1, 2]
𝑒𝑖 = [4, 5, 6, 7, 0, 1, 2, 3]
𝑓𝑖 = [5, 6, 7, 0, 1, 2, 3, 4]
𝑔𝑖 = [6, 7, 0, 1, 2, 3, 4, 5]
ℎ𝑖 = [7, 0, 1, 2, 3, 4, 5, 6]

(1)

4.2.2 Architecture Design. Figure 2 shows the top-view of the
Novel Counter-Based Design. Same as the naive design, block values
are stored in an array of registers (result array). However, instead
of shifting every block value among registers every cycle, only two
register values (new_a and new_e) will be updated, while keeping
other values in their original registers. A counter, allocation muxes
and set of computation muxes are introduced to achieve this goal.

ASIC Design for Bitcoin Mining

Figure 2: Novel Counter-Based Design

The counter is used to represent which iteration the accelerator
is currently processing. Based on this counter value, the allocation
mux determines which two registers will be updated with new
values, and the set of computation muxes choose the values for
computation unit by referencing the index look up table mentioned
above.

The computation unit t1 and t2 will calculate the temp1 and
temp2, as mentioned in the section 2.1, add them with 𝑑 to get
𝑛𝑒𝑤_𝑎 and 𝑛𝑒𝑤_𝑒 , and feed them to the write back register.

The Write Back register will record the result in the current
iteration and write back the result to the result array in the next
cycle. At the same time, the result is forwarded for the next iteration.
This is intended to reduced the critical path between the set of
computation muxes and the allocation mux.

4.3 Pipeline Design
Pipeline breaks circuits with long critical paths by introducing
clock memories, thus increasing the throughput of the circuits. The
circuits are divided into several sections, with regarding to stages
in the pipeline. The clock frequency can be increased with reduced
critical path in the pipeline.

The pipeline implementation of SHA-256 consists of three stages.
Register𝑀 and 𝐿 are inserted to save the temporary values. Two
multiplexers are introduced to select 𝐺 or 𝐻 in stage 1, and select
𝐶 or 𝐷 in stage 2.

Stage 0: Register𝑊 and 𝐾 are loaded. Sum of𝑊 , 𝐾 and mux2
are calculated and ready to feed into𝑀 .

Stage 1: Register𝑀 is updated. Hash values 𝐸 −𝐻 are updated.
Sum of 𝐶ℎ, 𝑆1 and𝑀 are calculated and ready to feed into 𝐿. The
new value of 𝐸 is also calculated at the mean time.

Stage 2: Register 𝐿 is updated. Hash values 𝐴 − 𝐷 are updated.
The new value of 𝐴 is calculated by sum of𝑀𝑎𝑗 , 𝑆1 and 𝐿.

Figure 3: Pipeline Design

In the first clock cycle, only stage 0 is executed. Meanwhile,𝐴−𝐻
are loaded with the initial hash values: 𝐴(0) − 𝐻 (0). Register 𝑀
and 𝐿 are cleared. mux1 outputs 𝐷 (0) and mux2 outputs 𝐻 (0). In
the second clock cycle, both stage 0 and 1 are executed. Register𝑀
is updated. mux1 outputs 𝐷 (0) and mux2 outputs 𝐹 (0). In the third
clock cycle, all stages are executed. Both register 𝑀 , 𝐿 are updated.
𝐸 −𝐻 are updated with new hash value: 𝐸 (1) −𝐻 (1).mux1 outputs
𝐶 (0) and mux2 outputs 𝐹 (0). The fourth clock cycle repeats the
computation in the third one, except that 𝐴 − 𝐷 are updated with
new hash value: 𝐴(1) − 𝐷 (1). From now on, the pipeline has been
initialized and the computation in the fourth clock cycle will be

Yiqiu Sun, Haichao Yang, Wentao Zhang, and Yufeng Gu

repeated for 60 cycles until the ending stages in the pipeline. In
clock cycle 64, The𝑊 and 𝐾 are not loaded anymore and it is the
last time for execution of stage 1. In clock cycle 65, 𝐸 − 𝐻 are not
updated and register𝑀 is cleared. In clock cycle 66, circuit outputs
𝐴 − 𝐻 the pipeline implementation of SHA-256 is all done.

5 EVALUATION
5.1 Synthesis Results
The ASIC design is described in System Verilog and synthesized
using Synopsys Design Compiler. The target technology library is
the lec25dscc25_TT library, featuring 130 nm process. The area and
timing results are given in Table 1. Area figures are expressed in
square micron units; the latency column expresses the number of
clock cycles that are needed to complete the hashing of one 512 bit
message block times the clock cycle. The latency is expressed in
nano seconds.

It is clear from the table that the area is traded for speed. Both
Novel counter design and Pipeline design achieve great speed up
compared with naive design. However, the pipeline utilizes area
better than novel counter design. The pipeline design has area
overhead of 1.81x and 3.05x speedup, while novel counter has 2.09x
and 1.6x speedup.

Latency(ns) Area(𝑢𝑚2)
Naïve Design 64 × 9.76 = 624.6 229453
Novel Counter 64 × 6.04 = 386.56 480556

Pipeline 66 × 3.10 = 204.6 416344
Table 1: ASIC synthesis result

5.2 CPU and GPU Performance
We also tested out the respective performance of CPU and GPU.
We ran the C++ version of SHA256 code on Intel Xeon Gold 6240
CPU and its CUDA version on one Nvdia Tesla V100 GPU [11]. For
both design, we make sure we run large enough iterations for the
machine to reach saturation.

The average hash latency for one thread is less trivial for GPU
because GPU adopts a specialized scheme to hide individual thread
latency. We experimented the average latency per hash at different
number of threads on GPU. From the results shown in Fig. 4, our
GPU reaches a saturation at a capacity of about 216 threads. After
this threshold, the performance of GPU degrades exponentially. We
got the final average hash latency by running different iterations
with 216 threads on GPU and applying curve-fitting towards the
results (shown in Fig. 5). The average hash latency for both CPU
and GPU is then given in Table 2.

5 10 15 20

log
2
(threads#)

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 H

a
s
h
 L

a
te

n
c
y
 (

n
s
)

10
5

Figure 4: Average hash latency at different threads on GPU

0 200 400 600 800 1000 1200

Number of threads

0

2

4

6

8

H
a
s
h
 L

a
te

n
c
y
 (

n
s
)

10
7

Experimental Results

Fitting Curve

Figure 5: Average hash latency at different iterations onGPU

Latency(ns)
CPU 347.3
GPU 70977.5

Table 2: CPU and GPU simulation result

5.3 Energy Efficiency Analysis
The power of CPU is measured by running 48-thread (24 cores *
2 SMT width) hash function 100 million times on Intel Xeon Gold
6240 CPU, using powertop to record the power and time and taking
the average to reach the final result.

The power of GPU is measured by referencing the max power
in NVIDIA TESLA V100 data sheet3. TESLA V100 has a max power
consumption of 250 W with 5120 cores.

The power of the ASIC design is measured by report_power
command in the Power Compiler in the Synopsys Design Compiler
3https://images.nvidia.com/content/technologies/volta/pdf/437317-Volta-V100-DS-
NV-US-WEB.pdf

ASIC Design for Bitcoin Mining

set. Due to lack of access to the ASIC library resources, we won’t
analysis the power in the dc_shell -topo mode. In dc_shell, the
report_power command reports the power after the logic synthesis
but before the place and route. The power may not the same as
the final power due to the following factors: Logic synthesis uses
wire load models, High fanout nets are not synthesized and Clock
trees do not exist in the design at the time of synthesis. However, it
is still a good indicator to roughly estimate the power cost of the
ASIC designs.

Table 3 shows the power and the energy efficiency, which is
defined as MHash / J, for every method mentioned in section 3 and
section 4.

GHash/s Power(W) MHash/J
Naïve (512 HE) 0.82 12.8 64.0

Novel Counter (512 HE) 1.33 42.0 31.5
Pipeline (512 HE) 2.50 44.9 55.7
Xeon Gold 6240 0.14 165 0.83

Tesla V100 1.33 250 3.69
Table 3: The power and energy efficiency of different designs
at 512 Hash Elements (HE)

The table 3 shows the ASIC designs outperform the CPU and
GPU 67x and 15x respectively. And for the comparison between dif-
ferent ASIC designs, although the Naive design has a small margin
in terms of energy efficiency, it has a about 2x-worse area efficiency
(measured by throughput per𝑚𝑚2) than the Pipeline design. There-
fore, we consider the Pipeline design as the best, based on which a
cost is estimated in the next section.

5.4 Cost Analysis
5.4.1 Cost per Wafer. Wafer costs and defect rates are hard to ob-
tain. Moreover, the technology node we are designing with (IBM
130) is obsolete since IBM is no longer in the fab business. Alterna-
tively, we found the price for TSMC 90 in 2020, which is $1650 per
12-inch wafer[1]. Here we are using the price for a more advanced
technology node (90 nm vs 130 nm) to offset the overhead of defects.

5.4.2 Dies per Wafer. The number of dies per wafer is given by
the following equation[2]

𝑁 =

⌊
𝜋

(
𝑟2

𝐴
− 2𝑟
√
2𝐴

)⌋
Where 𝑁 is the number of dies per wafer, 𝑟 is the radius of the
wafer, and𝐴 is the area of the die. The area of our 512 Hash Element
Pipeline design is 215𝑚𝑚2 under IBM 130 technology. Also plugging
in the wafer diameter, which is 12 inches, we have 336 dies per
wafer for our design.

5.4.3 Per Die Cost. The mask cost of 130 nm technology is about
$200,000[3]. Here we optimistically assume that our volume will
be 1 million, the overall cost per die is $4.2. This number does not
take packaging or testing into account. However, there is a large
enough margin compared against off-the-shelf CPUs and GPUs.

Pipeline Tesla V100 Xeon
10

0

10
1

10
2

10
3

10
4

C
h
ip

 C
o
s
t
(U

S
D

)

Figure 6: Per Chip Cost Comparison with CPU and GPU

5.5 ASIC Benchmarks
Figures 7 compares the frequency and area of Pipeline design and
design by Dadda et al.[4]. Unfortunately, our design, despite us-
ing a more recent technology, is beaten by 3x on area and 2x on
frequency. This is probably due to the extensive customization of
adder modules in [4]. Our design, on the other hand, uses the "+"
operator and leaves the work to the Design Compiler. We have
tried integrating different adders, including Brent–Kung, Kogge-
Stone, and CLA, but none of these out-performed the default "+"
operator. The adders are responsible for a large fraction of the area
and latency. For instance, a Brent-Kung adder occupies 0.025𝑚𝑚2

of area, while introducing about 1𝑛𝑠 latency. There are 7 adders in
our design, and the longest path contains 2 adders. This means that
adders alone can take up nearly 42% of area, while being on the
critical path. Therefore, we must look further into the optimization
of adders in order to improve our overall performance.

Dadda (STM 180) Pipeline (IBM 130)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A
re

a
 (

m
m

2
)

0

100

200

300

400

500

600

700

800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Area

Frequency

Figure 7: Area and frequency of Pipeline and Dadda

Yiqiu Sun, Haichao Yang, Wentao Zhang, and Yufeng Gu

6 FUTUREWORK
6.1 Full-Custom Adder Design
Since the adders have become a bottleneck in our design, it can be
beneficial to implement a full-custom adder to optimize for speed
and area. Most additions may be performed by carry-save adder
(CSA) trees to avoid unnecessary carry propagation, thus reducing
circuit delay. Meanwhile, some form of carry-propagate adder (CPA)
(e.g. ripple-carry adder (RCA) or carry-lookahead adder (CLA))[6]
can be leveraged to perform the ultimate carry propagation for only
once.

6.2 Peripherals
We only implemented the core functionality of Bitcoin mining. In
order to make our design practical, some peripheral devices are also
essential. We need an in-package DRAM to store the Bitcoin data
to be hashed. Also, there should be a PCIe interface that transfers
data to and from the CPU with proper bandwidth and speed.

7 RELATEDWORK
There are some other works exploring the hardware design for
bitcoin mining.

Taylor et al. [5] gave an overview of the Bitcoin mining hardware
in the past decade, which introduced the Bitcoin price curve and
various hardware design covering CPUs, GPUs, FPGAs and ASIC-
Miner.

Vilim et al. [6] explored the potential for approximation to im-
prove the profit of Bitcoin mining. The implementation of Kogge-
Stone adder using functional and operational approximation has
the ability to raise the Bitcoin mining profits by 30%.

Martino et al. [7] designed an SHA-256 accelerator meeting the
computational demands of a block-chain application, but at the
same time satisfying the constraints that are typically found in
IoT environments. Gold-Strike 1 [8], Coin-Terra’s first generation
Bitcoin mining processor provided solutions for the high power
density and cooling problems in Bitcoin ASICs, achieving the energy
efficiency of 4 GHash/J on a 16nm process node.

8 CONCLUSION
In this paper we presented three ASIC implementations (Baseline,
Naive Counter Based, Pipeline) of the SHA-256 algorithm compres-
sion function part. These three implementations are compared with
latest CPU and GPU algorithm implementations. We show that
the best ASIC design achieves 2.50 Ghash/s with energy efficiency
55.7 Mhash/J, which outperforms CPU and GPU by 17.85x and
1.87x in terms of performance; 67.01x and 15.09x in terms of energy
efficiency.

9 WORK CONTRIBUTION

Member Work
Yiqiu Sun GPU, Baseline implementation
Yufeng Gu Pipeline version implementation

Haichao Yang CPU, Verification and validation
Wentao Zhang Novel Counter version design and implementation

REFERENCES
[1] Anton Shilov, "TSMC’s Estimated Wafer Prices Revealed," Web., Sept. 2020,

Available: https://www.tomshardware.com/news/tsmcs-wafer-prices-revealed-
300mm-wafer-at-5nm-is-nearly-dollar17000, Accessed: Apr. 19th, 2021.

[2] Neil Weste and David Harris, CMOS VLSI Design: A Circuits and Systems Perspec-
tive. 4e. Addison-Wesley, Boston, USA, 2010. p. 650.

[3] AnySilicon, "Semiconductor Wafer Mask Costs," Web. Available:
https://anysilicon.com/semiconductor-wafer-mask-costs/, Accessed: Apr.
19th, 2021.

[4] L. Dadda, M. Macchetti and J. Owen, "The design of a high speed ASIC unit
for the hash function SHA-256 (384, 512)," Proceedings Design, Automation
and Test in Europe Conference and Exhibition, 2004, pp. 70-75 Vol.3, doi:
10.1109/DATE.2004.1269207.

[5] Taylor, Michael Bedford. "The evolution of bitcoin hardware." Computer 50.9
(2017): 58-66.

[6] Vilim, Matthew, Henry Duwe, and Rakesh Kumar. "Approximate bitcoin mining."
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2016.

[7] Martino, Raffaele, and Alessandro Cilardo. "Designing a SHA-256 processor for
blockchain-based IoT applications." Internet of Things 11 (2020): 100254.

[8] Barkatullah, Javed, and Timo Hanke. "Goldstrike 1: Cointerra’s first-generation
cryptocurrency mining processor for bitcoin." IEEE micro 35.2 (2015): 68-76.

[9] M. Macchetti and L. Dadda. -pipelined hash circuits". In: 17th IEEE Symposium on
Computer Arithmetic (ARITH’05). 2005, pp. 222-229. doi: 10.1109/ARITH.2005.36

[10] M. Bedford Taylor, "Bitcoin and the age of Bespoke Silicon," 2013 International
Conference on Compilers, Architecture and Synthesis for Embedded Systems
(CASES), 2013, pp. 1-10, doi: 10.1109/CASES.2013.6662520.

[11] David B. Kirk and Wen-mei W. Hwu. 2016. Programming Massively Parallel
Processors, Third Edition: A Hands-on Approach (3rd. ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

	Abstract
	1 Introduction
	2 Background
	2.1 SHA-256 Algorithm

	3 Implementation on General Processors
	3.1 CPU
	3.2 GPU

	4 ASIC Design
	4.1 Naïve ASIC Design
	4.2 Novel Counter-Based Design
	4.3 Pipeline Design

	5 Evaluation
	5.1 Synthesis Results
	5.2 CPU and GPU Performance
	5.3 Energy Efficiency Analysis
	5.4 Cost Analysis
	5.5 ASIC Benchmarks

	6 Future Work
	6.1 Full-Custom Adder Design
	6.2 Peripherals

	7 Related Work
	8 Conclusion
	9 Work Contribution
	References

