
EECS545 Final Project Report
Indoor Location & Navigation

Jiaxing Yang
Computer Science Engineering Department

University of Michigan
Ann Arbor, MI 48105

yjxqwed@umich.edu

Wentao Zhang
Computer Science Engineering Department

University of Michigan
Ann Arbor, MI 48105
zwtao@umich.edu

Bohao Zhang
Robotics Institute

University of Michigan
Ann Arbor, MI 48105

jimzhang@umich.edu

Yuxin Chen
Robotics Institute

University of Michigan
Ann Arbor, MI 48105

chyuxin@umich.edu

Abstract

Modern buildings are becoming more and more complex. Accurate indoor lo-
cation service is imperative to help people navigate inside a building. However,
traditional outdoor navigation methods like GPS perform poorly inside a building
due to the weak signal. We propose a method to address the indoor localiza-
tion problem using machine learning on the data provided by a smartphone. Our
approach uses kNN on the iBeacon data to estimate the floor and reach the accu-
racy of 64.7% if allowing ±1 error. Besides, our method performs a kernel ridge
regression on the IMU data to predict the position. It calibrates the estimation
periodically with signal fingerprinting methods to eliminate the accumulated IMU
data error. Our method achieves a position estimation error under 1m.

1 Introduction

The smartphone goes everywhere with people whether driving to the grocery store or shopping for
holiday gifts. With users’ permission, apps can use the location to provide contextual information.
We can get driving directions, find a store, or receive alerts for nearby promotions. These handy fea-
tures are enabled by GPS, which requires outdoor exposure for the best accuracy. Yet, there are many
times when people are inside large structures, such as a shopping mall or event center. Accurate in-
door positioning, based on public sensors and user permission, allows for a great location-based
experience even when people are not outside.

Current positioning solutions have poor accuracy, particularly in multi-level buildings, or generalize
poorly to small datasets. Additionally, GPS was built for a time before smartphones. Today’s use
cases often require more granularity than is typically available indoors.

Therefore, predicting the indoor position of smartphones based on real-time sensor data will not
only improve the accuracy of GPS-based localization techniques, but also provide an alternative for
indoor positioning.The sensor data consists of dense indoor signatures of WiFi, geomagnetic field,
iBeacons etc., as well as ground truth positions collected from hundreds of buildings in cities. The
IMU (accelerometer, rotation vector sensor) and geomagnetic field (magnetometer) readings col-
lected by the smart-phone will also be recorded. With all these sensor data and a machine learning
based positioning method, smartphone user can get a reliable indoor-localization service with com-

Preprint. Under review.

parable accuracy as outdoor, which will improve the indoor experience and reduce the large demand
of mall maps for each specific building.

The paper is structured as follows. In Section 2, we estimate the floor number and the position at one
certain floor separately. we proposed a kNN algorithm using iBeacon for indoor floor estimation. In
Section 3, we applied three different regression methods and compare their performance. It turns out
that the ANN using GPS and IMU achieve highest indoor position estimation accuracy. In Section 4,
we gave a brief conclusion on the project as a whole.

2 Floor Prediction

2.1 METHODOLOGY

K-Nearest Neighbor (KNN) is a simple method that tries to perform classification by calculating the
distance between features. The values of RSSI fingerprints depend on the physical distance between
the iBeacon devices, which are labeled by UUID and MainID, and user mobile phone. The KNN
algorithm considers K calibration points. The selection of these points based on selecting the closest
K points in the feature space to approximate the position of the user.

The KNN algorithm starts by calculating the P-norm of three dimensions iBeacon information tuples
(UUID, MainID, RSSI) (xi) , where xi belongs to the fingerprint radio map xi ∈ RN .

The KNN algorithm calculate the distance between the measured iBeacon tuple and the tuples in
matrix of iBeacon information as xi, shown in the following equation

d(y − xi) = (

|y|∑
j=1

|yj − xij |p)1/p (1)

where d(·) is the distance measured, xij is the j-th train tuple in class i. In case of p = 1 represents
Manhattan norm-distance and in case of p = 2 represents using the Euclidean norm-distance. In
this paper, the Euclidean distance is used. The algorithm selects the class which has the minimum
Euclidean norm-distance with y as the predicted floor level.

2.2 PROPOSED METHOD

2.2.1 Pre-train

We notice that the amount of data is distributed unfairly among the floors. The floor 1-4 con-
tains 77% of the total amount of data, while in the ideal case, they should represent 50% of the
them. Thus, the data balance technique is applied to the data set. The data are replicated by
max(floor data num)/floor data num times. The figure 1 shows the data distribution before
and after the data balancing.

2.2.2 Train

Our training set is composed of 12,000 trace files. IBeacon information tuples (UUID, MainID,
RSSI) are extracted to form a matrix in a dimension of N × 3. Then the UUID and MainID are
transformed to One-hotpot representation. The onehot encoder is saved for future prediction. Then,
the transformed array are used to train a KNN model with K = 8. The accuracy of the trained KNN
model for the single iBeacon tuple is 44%

2.2.3 Prediction

The floor number will be predicted based on the trace file provided by the user. The iBeacon in-
formation tuple (UUID, MainID, RSSI) will be first extracted from the trace file. Then each tuple
will be fed to the prediction model(K nearest neighbour), which will return a predicted floor for that
tuple. And that floor will get one point. After all tuples have been processed, the floor with the
highest score will be chosen as the predicted answer. The baseline prediction method gives 32.1%
accuracy.

2

Figure 1: Demonstration on data sample distributions before and after data balance.

Figure 2: The flow graph of the Train and Prediction part of the proposed method. The trained KNN
model is used to predict the probability of each floor based on the iBeacon information tuples. The
floor with the highest probability is treated as the prediction result.

3

2.3 Probability Optimization

Instead of returning a predicted floor and vote that specific floor, the prediction model will return an
array of probability of each floor and accumulate the probability across the information tuples. With
the optimization, we found that the overall accuracy rises 2%. However, the accuracy for floor 3-7
rises by 26%. This shows that this optimization makes our method more tolerant with the noise.

2.4 Result Analysis

We test the model with 2,400 trace files and the test results for baseline and optimizations are shown
in the table 1. The baseline implementation gives us 32% accuracy. The data balancing technique
provides 12% accuracy. With the probability optimization, although the overall accuracy rises 2%,
the accuracy for floor 3-7 rises by 26%.

We take a deep look at the miss prediction generated by the model. If we allow a floor tolerance,
that is if the predicted floor is in the range of the correct floor ±1, we will classify it as correct, then
the overall accuracy rises to 64.7%, with the highest single floor (floor 6) accuracy to 90%. This
shows that the noise in the data set, especially for floor 3-7, is large and our model can not reduce
that noise further.

Floor Baseline Balanced Balanced + proba Balanced + proba + floor tolerance
0 0.03 0.73 0.60 0.63
1 0.78 0.72 0.70 0.72
2 0.90 0.82 0.60 0.64
3 0.06 0.04 0.12 0.42
4 0.48 0.20 0.24 0.56
5 0.06 0.44 0.50 0.72
6 0.08 0.32 0.40 0.90
7 0.06 0.36 0.46 0.58

Avg 0.321 0.439 0.447 0.647
Table 1: The test accuracy for floor prediction. With all optimization applied, 44.7% of accuracy is
achieved. The floor tolerance boosts the accuracy to 64.7%

3 Position Estimation

3.1 Dataset Description & Process

The dataset given by (1) consists of many traces in different buildings recorded by the smartphone
sensors. Specifically, the data that is useful for position prediction is twofold. The first part is the
IMU sensor data which provides the information of motions of the smartphone, including acceler-
ation (from three dimensions) and rotation vectors (from three dimensions) (2). The second part is
the ground truth positions in the building frame provided by the host of the competition. The IMU
sensor data is reported and collected in a high frequency (about 50 Hz). The ground truth positions
are recorded in a low and not constant frequency. It is typically given when the smartphone makes
a turn in a trace. Both parts of the data come with an unique timestamp which is measured by the
smartphone timer.

A low pass filter implementation is given from the host to reduce the noise from raw IMU sensor
data. A position interpolation implementation is also given to use both interpolation and filtered IMU
data to compute a position estimation for any timestamp. It is required that the given timestamp
should appear between two ground truth positions. Figure 3 shows an example of a trace in the
dataset, including the ground truth positions and interpolated positions as an estimate of the actual
trace.

We define the notation of the data for the discussion in the following sections. We use ti ∈ N, where
i ∈ N, to represent a possible time stamp coming together with a set of sensor data or ground truth
position data. We use ai ∈ R3 to represent the acceleration in 3-D world measured by smartphone
IMU sensor at some time stamp ti. We use ri ∈ R3 to represent the rotation vector in 3-D world

4

Figure 3: Demonstration on ground truth positions and their corresponding interpolated trace pro-
vided in the dataset. Red star points represent the ground truth positions directly provided in the
dataset. The green trace consists of interpolated positions computed by the ground truth positions
and filtered IMU sensor data.

measured by smartphone IMU sensor at some time stamp ti. Both ai and ri refer to filtered sensor
data. We use di ∈ R2 to represent the interpolated position in a 2-D map at some time stamp ti.

3.2 Proposed Method

3.2.1 Framework Overview

Significant achievements on indoor localization in both academia and industry have been accom-
plished in the past two decades. Multiple means were surveyed to improve the accuracy of indoor
localization, such as pure IMU sensor (3), ambience fingerprinting (4), FM fingerprinting (5) and
GPS (6) as well. However, highly accurate smartphone-based indoor localization in a practical
scenario is still an open problem (7). Typically, a pure IMU method will become less and less unre-
liable since the error in acceleration is accumulated all the time (3). While localization using signal
fingerprinting may be time consuming and computationally expensive.

Here, we propose an machine learning based localization framework that fuses IMU sensor and
the fingerprinting methods mentioned above to enable high frequency and computationally efficeint
indoor position estimation without losing too much accuracy. It uses a simple predictor to estimate
the change of position from IMU sensor data while compensating the accumulated error from IMU
sensor with the aid from signal fingerprinting methods. The signal fingerprinting methods are called
in a low frequency to save computation resource while the predictor based on IMU is called in a
high frequency for every filtered IMU sensor data.

Our method is detailed in Algorithm 1. To initialize the algorithm, an initial position p0 together
with its corresponding IMU sensor data a0, r0 and time stamp t0 is given. Since the outdoor GPS
localization is accurate enough, we assume that p0 is the GPS-estimated position, which is abso-
lutely accurate, before a smartphone user enters a building and enables indoor localization service.
We also defines a parameter Tref as the period to call one signal fingerprinting method to calibrate
current position estimated by IMU sensor. Every time when a period Tref passes (Line 7), we call
ComputeReferencePosition() function to calibrate current position p (Line 8) with a reference po-
sition. ComputeReferencePosition() refers to a selected signal fingerprinting method that generates
reference positions. Otherwise, we use a Predictor() function to estimate the change of position
(Line 14) based on filtered IMU sensor data from function ReadIMU() (Line 6) and update the cur-
rent position by moving forward a step (Line 11). After that, the program reports a tuple of current
timestamp ti and current estimated position p. Note that Tref is always larger than the IMU sensor
frequency, which is equivalent to any ti − ti−1.

5

Algorithm 1 Proposed Method
Inputs: Initial position p0, Initial time stamp t0, Initial IMU data a0, r0
Parameters: Period to call signal fingerprinting method Tref

Algorithm:
1: p← p0 C initialize current position
2: ∆p0 ← Predictor(a0, r0)
3: i = 1
4: tref = t0 C initialize timestamp when a reference position is provided
5: while isIndoor() do
6: {ti, ai, ri} ← ReadIMU()
7: if ti − tref > Tref then
8: {tref , p} ← ComputeReferencePosition() C calibrate current position
9: ti ← tref

10: else
11: p← p + ∆pi−1(ti − ti−1) C update current position
12: end if
13: Report(ti, p)
14: ∆pi ← Predictor(ai, ri) C estimate change of position for next step
15: i← i + 1
16: end while

3.2.2 Change of Position Predictor Train & Evaluation

In the dataset, we assume that the interpolated traces are absolutely accurate and can represent the
ground truth traces. Suppose there are N avaliable sensor data in the dataset. As a result, we consider
the input as all acceleration and rotation vector data ai and ri at timestamp ti for all i = 1, · · · , N .
For the output, we use the average velocity to represent change of position with respect to time.
We first compute an interpolated position di for all the timestamps ti. Then we use Equation 2 to
compute the labels of the predictor.

vi =
di+1 − di
ti+1 − ti

, i = 1, · · · , N − 1 (2)

Here vi ∈ R2.

There are 73623 groups of data available which maps from ai and ri to vi after processing. We
randomly partitioned the data into train, validation and test set using the ratio of 60%, 20% and
20%.

We further apply regression analysis to the data to train a predictor model. Three regression methods
are considered. The first one is a simple linear ridge regression. The second one is a kernel ridge
regression with a polynomial kernel of degree 3. The third one is a three-layers neural network. All
three layers are a combination of a linear layer with a ReLU layer. The dimension of all three linear
layers is 500. Their performance are evaluated in Section 3.3.

3.3 Result Analysis & Comparison

We ran Algorithm 1 with three choices of predictor and plotted their estimated traces. Figure 4
provides a demonstration of the results of three predictors. Note that the estimated trace will be
immediately reset to the reference position as soon as it is available after we call ComputeRefer-
encePosition(). In the test cases, we treat the ground truth positions as reference positions and the
interpolated traces as ground truth traces.

We can observe that the ridge method gives an inaccurate estimation of the change of positions,
while the other two methods gives a better estimation. For most of the timestamps, the kernel ridge
method gives a similar estimation compared with the neural network method. To further evaluate
the performance of three given methods, we provide the norm difference between estimated traces
and ground truth traces at every timestamp over the same four test traces in Figure 5.

6

(a) test trace 1 (b) test trace 2

(c) test trace 3 (d) test trace 4

Figure 4: Estimated traces using three different predictors over four test traces. The red points
represent the ground truth positions in the test set. The green traces represent the interpolated trace
given in the competition, which we treat as ground truth traces. The magenta traces represent the
traces estimated using the ridge method. The cyan traces represent the traces estimated using an
artificial neural network. The yellow traces represents the traces estimated using the kernel ridge
method.

Table 2 shows the mean and standard deviation of differences of three methods over all timestamps in
all test traces provided. The neural network we built is able to provide the most accurate estimations.
The kernel ridge method, however, provides more stable estimations but with larger error. The mean
error of both methods are within 1 meter.

Methods Mean (m) Standard deviation
Ridge Method 2.033262237516566 1.9404443522165973

Kernel Ridge Method 0.864887320767895 0.6506510708496157
Neural Network Method 0.7267895290771469 0.7263866152216657

Table 2: Mean and standard deviation of differences between estimated traces using three different
predictors and ground truth traces at every timestamp over all test traces

4 Conclusion

Indoor location and navigation is a significant problem in modern life but is still challenging. We
introduce a method that estimates both floor and position accurately boosted by machine learning.
Our approach uses the smartphone-collected data in two aspects. It performs kNN on the iBeacon
data for the floor estimation. Besides, it uses the IMU data and performs regression for the position
estimation. With the two outputs, our method can give the final result for the indoor localization
service.

7

(a) difference in test trace 1 (b) difference in test trace 2

(c) difference in test trace 3 (d) difference in test trace 4

Figure 5: Difference between estimated traces using three different predictors and ground truth
traces at every timestamp over four test traces. The magenta data represent the difference using the
ridge method. The cyan data represent the difference using an artificial neural network. The yellow
data represents the difference using the kernel ridge method.

References
[1] MicrosoftResearch, “Indoor location & navigation.” [Online]. Available: https://www.kaggle.

com/c/indoor-location-navigation

[2] AndroidDevelopers, “Motion sensors.” [Online]. Available: https://developer.android.com/
guide/topics/sensors/sensors motion

[3] F. Höflinger, R. Zhang, and L. M. Reindl, “Indoor-localization system using a micro-inertial
measurement unit (imu),” in 2012 European Frequency and Time Forum, 2012, pp. 443–447.

[4] M. Azizyan, I. Constandache, and R. Roy Choudhury, “Surroundsense: Mobile phone localiza-
tion via ambience fingerprinting,” in Proceedings of the 15th Annual International Conference
on Mobile Computing and Networking, ser. MobiCom ’09. Association for Computing Ma-
chinery, 2009, p. 261–272.

[5] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, “Fm-based indoor localization,” in Pro-
ceedings of the 10th International Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’12. Association for Computing Machinery, 2012, p. 169–182.

[6] M. Okamoto and C. Chen, “Improving gps-based indoor-outdoor detection with moving direc-
tion information from smartphone.” Association for Computing Machinery, 2015.

[7] K. Liu, X. Liu, and X. Li, “Guoguo: Enabling fine-grained indoor localization via smartphone,”
in Proceeding of the 11th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’13. Association for Computing Machinery, 2013, p. 235–248.

8

https://www.kaggle.com/c/indoor-location-navigation
https://www.kaggle.com/c/indoor-location-navigation
https://developer.android.com/guide/topics/sensors/sensors_motion
https://developer.android.com/guide/topics/sensors/sensors_motion

	Introduction
	Floor Prediction
	METHODOLOGY
	PROPOSED METHOD
	Pre-train
	Train
	Prediction

	Probability Optimization
	Result Analysis

	Position Estimation
	Dataset Description & Process
	Proposed Method
	Framework Overview
	Change of Position Predictor Train & Evaluation

	Result Analysis & Comparison

	Conclusion

