
A Novel Accelerator Design for Natural Language Processing CNNs

Colter, Zacharya and Zhang, Wentaob and Liu, Bryanb,cand Lou, Yuanqingb,c

Abstract

In our data-driven world, there is a
paramount need for technologies that can
make sense of and keep up with the rapid
growth of big data. A very large subset of
this work involves interpreting complex and
highly variable sentences, to answer ques-
tions, to paraphrase, to classify and compare
them, and to summarize the main takeaways
of a much larger piece of text, to name sev-
eral. Such tasks are used in domains such as
targeted user advertising, stock price predic-
tion, and speech recognition. With the vast
amounts of new data created every day, NLP
technologies must be both accurate, fast, and
scalable to keep up with growing demand.
Traditional LSTMs and RNNs, which in the
past have been used in the NLP field, have
faltered in terms of performance and speed
when comparing them to CNNs. CNNs have
shown great promise to be used for NLP, a
domain with a huge range of applications,
and thus we have designed an NLP CNN ac-
celerator. Our hardware targets the convolu-
tion operation between sentences and a set
of filters for acceleration by leveraging 1D
convolution for higher data reuse and a fast
lookup table to reuse previous computations.
In doing this, our accelerator achieved a 23x
speedup when compared to the software im-
plementation.

Keywords: Convolutional Neural Network,
Natural Language Processing, Accelerator

1 Introduction

The major bottleneck of NLP CNNs is the convolu-
tion operation, which we found takes up about 72% of
the total run-time in our software implementation[1].

Because of this, we decided to build an accelerator to
increase the performance of our convolution operation
step in terms of increasing throughput and reducing
power consumption, while maintaining or improving
latency when compared to our software benchmark on
a general purpose processor.
NLP CNNs differ from image processing in two key
ways. First, inputs are indexes into an embedded ma-
trix of hyperparameters, where each row of hyperpa-
rameters represents a pre-computed feature represen-
tation of a word. Second, the filter is asymmetrical
with one dimension being the row size of the embed-
ded matrix. Because the filter has the same length of
the hyperparameters, this is effectively a 1D convolu-
tion operation. The is much less reuse in a naive 1D
convolution operation than in a 2D due to how many
more weights are required per each fmap.
Our design exploits the fact that there are a finite
amount of input indexes. Reducing the input sample
space allows us to

1) store newly computed word and filter computa-
tions in a lookup table in BRAM for fast lookup
when we see that word again for the same filter.

2) greatly increase the number of lookup table hits
due to the drastically smaller number of total
possible results. Our hardware implements this
lookup table idea to accelerate the convolution
operation.

Overall, our accelerator’s design is split into three dif-
ferent stages: pre-processing, processing, and post-
processing.

1. Pre-processing
We train our network in Python using Keras to
get our filter weights. We then obtain our em-
bedded matrix from Stanford’s NLP glove library
and a batch of sentences we want our accelerator
to run inference on. Our values in our embedded
matrix and filter weights are 32-bit floating point



Figure 1: Conventional 2D Convolution

Figure 2: 1D Convolution in NLP CNNs

numbers, while each sentence’s word in a sentence
batch corresponds to an index into the embed-
ded matrix. We then quantize our 32-bit floating
point numbers into 32-bit integers. These values
are loaded into our hardware’s BRAM upon start-
ing inference.

2. Processing
We start by loading a single filter into a small
L0 cache. Then we run 1D convolution on our
batch of sentences. Each sentence is computed
word-by-word. For each word, we first check if
the result has already been computed and lies in
our lookup table. If it has, we have our result.
Otherwise, we must load the word’s embedding
from the BRAM buffer and take the dot product
of the filter column and the embedding vector.
Once this is completed for a single filter, the next
filter is loaded and the process repeats.

3. Post-processing
We send all our convolution results back to the
general purpose processor or another accelerator,
remembering to convert our values back into 32-
bit floating point. For the particular software we
tested, there is a global max pooling layer that is
followed by logical regression to obtain the final
decision.

Figure 3: Design Flow

2 Background and Motivation

In this section, we provide some necessary background
on how the CNNs are used to deal with the NLP prob-
lems which are needed for the rest of this paper.
Embedding Matrix: Embedding Matrix is used to
map each word into an array in size 1 × Dimension.
These arrays show how words are related with each
other. The Embedding Matrix we used for testing is
pre-trained Glove[2] data set, which has 4000 unique
words represented with 1 × 300 arrays, stored as 32-
bit floating point numbers.
Basic CNNs Algorithm for NLP: The algorithm
is proposed in the paper ”ABCNN: Attention-Based
Convolutional Neural Network.”[3] The paper pro-
posed to use CNNs to solve how to model the pair of
sentences. Two sentences with the length of 50 unique
words in maximum will first fetch the corresponding
unique word entries in the Embedding Word Matrix,
transforming into an 50 × 300 array respectively. Then
each matrix will be fed into corresponding CNN layer.
After that, Pooling layer and Logic Regression layer
are used to get the final result. Because it is men-
tioned in the paper that increasing the number of layer
doesn’t increase the accuracy and the GlobalMaxPool-
ing gives the better result, we just maintain our CNNs
to be one layer with filters size 120 × 300 × 4 and use
GlobalMaxPooling for pooling layer.
Motivation: After performing the work analysis for
the above algorithm, we found that the Convolution
layer takes 72% of the total running time. And due
to the relatively high reuse rate in the CNN for NLP,
we tried to design the accelerator using the lookup ta-
ble structure to reduce the number of calculation, thus
saving the energy and improving the performance.

3 Design

In order to efficiently calculate the 1D convolution,
past results are stored in a lookup table for future use.
There are several ways to store these results, one con-
sidered method was to store a single value for a set of



Figure 4: Distribution of Work

inputs. This type of reuse will be called “phrase level
reuse” because using the lookup table requires that fu-
ture inputs have a group of words in the same order as
a past group of words. The advantage of this method
is that no further computation is required for the con-
volution layer because final results are stored but not
partial sums. The problem with this method is, even
with a reduced amount of possible inputs, the amount
of output possibilities grows too quickly for reuse to be
the common case. For a common filter with a width of
4 and 4000 possible unique words there are 4 × 4000
output possibilities. If we assumed that the order of
the words was random, this would be useless. How-
ever, because the words are not random and common
phrases are often formed, this design might still be
more efficient than the original software implementa-
tion for some test cases. Our next proposed design,
which is the design we implement, gives a speedup for
all test cases.
Instead of storing final results at a phrase granularity,
we store partial results at the word granularity. By
doing this we reduce the output sample space from 4
× 4000 to 4000. Unlike the previous method we are
no longer storing final results, rather we are storing
the partial results of the vector multiplied by a single
filter column. Because of this, the amount of values
that need to be stored per input is equal to the filter
width. To be able to store every possibility for a sin-
gle filter, ((unqiue words) × (filter width) × (32-bits))
is required. For the particular software algorithms we
tested, this comes out to be 64 kB.
By storing results at a word granularity, the chance
for reuse is greatly increased over the previous meth-
ods, but it is still not the common case. With the max
sentence length of an input being 50 for the software
we tested it is possible for every word to be unique
and therefore the lookup table would have no use. In
order to force reuse, the algorithm calculates a batch
of 256 simultaneously. Since 256 × 50 is greater than
4000 unique possibilities, the pigeonhole principle tells
us that there has to be reuse. For the worst case, 8800
out of the 12800 words, or 68.75%, of the inputs can
be found in the lookup table. In reality, the amount

of reuse is much higher because every batch only has
a small subset of unique words.
Once a word is multiplied with the filter or looked up
from the cache, it is to the output buffer which is a
group of shift registers and adders. After the filter
width-1 cycles a final result will be outputted for ev-
ery for word input. This operation is fully in order,
so that means that if a word is not in the lookup ta-
ble the entire accelerator would need to stall and wait
for the multipliers to calculate the result. To reduce
the impact of the multiplier latency, we implement a
SIMT-esque architecture.
The current design simultaneously looks at 4 sentences
within the batch. Each of these sentences has its own
output buffer. If the next word to be processed in any
of the sentences is not in the lookup table, that word
will be sent to the multiplier array if it is not cur-
rently in use. Simultaneously, if any of the following
words be processed exists in the lookup table, one of
the words will be found and sent to the appropriate
output buffer.

Figure 5: Design Detail

4 Implementation Details

4.1 In Depth Details

To simulate our accelerator, we used the Alveo U200
FPGA. Our design utilized 63% of the BRAM at 1350



blocks, but only 20% of the LUTs. Some of the LUTs
are used by the array of 300 mults that calculate prod-
uct of a filter and a vector in 4 cycles. However, a
significant portion of the LUTs were used for creating
the cache. The embedded buffer and filter buffer were
made out of BRAM, however the cache was made out
of LUTs to allow for an extreme multi-ported design
in the future because BRAM in Xilinx FPGAs has
the limitation of only being dual-ported. Clearly, this
shows that our design requires a lot of local memory,
but it doesn’t need much hardware for computation.
This is advantageous because the memory can be eas-
ily reused for other accelerators on the chip.
On this board we have a clock speed of 10 ns. This
number could easily be improved with proper pipelin-
ing as most of our time was focused on the algorithmic
and high level parts of our design. However, instead
of pipelining to get a 2 or 3× improvement, it would
most likely be far more beneficial to instead make the
design more parallel. Of course these optimizations
are not exclusive, but there is a massive amount of
performance that can be unlocked with small tweaks
to the cache.
As previously mentioned, the cache was made out of
LUTs to allow for parallelism. Our current design
can look at 4 different addresses, but only accesses
1 per cycle. Changing this design to a 4, 8, or even 16
ported lookup table would give a massive performance
increase with a minimal increase in power consump-
tion.

4.2 Power Consumption

To calculate software power consumption, we multi-
ply the run time of convolution layer by the power of
our CPU for implementation, which is 1.78s × 45W
= 80.1J. Note that this number is just a rough esti-
mation. The actual power consumption is lower than
this.
Since we haven’t implement on a real FPGA board,
we are estimating hardware power consumption with
Xilinx Vivado, which turns out to be an incredibly
low 3.72W. Out the total power, 1.225W is dynamic
power while 2.495W is static. Our low power con-
sumption can be attributed to our large clock period
as well as low data movement. The leakage doubling
our dynamic consumption show just how dominant the
memory is in our design. By multiplying the simula-
tion time with this power, we have the energy con-
sumption to be 0.288J.
By dividing these two energy consumption, we can
see that the optimal energy saving is 99.64%, which
means we can accomplish the same amount of work
with 0.36% of the original energy.

5 Evaluation

We ran our accelerator using DeepLearn’s [3]dataset
”glove.6B.300d.txt”. We verified our accelerator’s val-
ues are consistent with the software implementation
results. We run both software and hardware versions
3 times and average their respective runtimes. Over-
all, we observe 23 × improvement in performance, as
shown in the following figures.(CPU Version: Intel 9th
i7, 2.60GHz)

Figure 6: Performance Analysis

6 Future Work

For now, we’ve achieved 23× speed up in CNN layer
and this definitely can be further improved. What we
want to do next is getting more speed up by improv-
ing pipelining, increasing number of lookup tables and
adjusting hyperparameters such as batch size, number
of sentences executed in parallel, etc.
So far, we are simulating our design with the help of
Xilinx Vivado. Implementing it on a real FPGA board
will be our focus in the future. We intend to use Xilinx
VU9P FPGA provided by Amazon web Services.

7 Conclusion

We designed an accelerator specific for solving the
heavy workload in the convolution layer in NLP CNNs
models. Using the lookup table and systolic array com-
puting unit, our accelerator achieves 23× performance
improvement and using 0.36% percent of original en-
ergy with the 0.1% loss in the convolution layer result
due to the float to int transformation.

8 Team and Team Member
Contributions

• Zachary Colter:
Hardware verilog Design, Hardware Implementa-
tion debug, Paper Writing, Poster



• Wentao Zhang:
Software Implementation, Perf, Hardware Imple-
mentation debug, Paper Writing, Poster

• Bryan Liu:
Software Simulation Implementation, Hardware
Implementation debug, Paper Writing, Poster

• Yuanqing Lou:
Hardware Implementation debug, Paper Writing,
Poster

References

[1] G. Bhatt, ABCNN: Attention-Based Convolu-
tional Neural Network for Modeling Sentence
Pairs (2017).
URL https://github.com/GauravBh1010tt/DeepLearn

[2] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, in: Em-
pirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532–1543.
URL http://www.aclweb.org/anthology/D14-1162

[3] W. Yin, H. Schütze, B. Xiang, B. Zhou, Abcnn:
Attention-based convolutional neural network for
modeling sentence pairs, Transactions of the As-
sociation for Computational Linguistics 4 (2016)
259–272.


